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Canada 
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Abstract. A q-analogue of the supersymmetric oscillator i s  constructed out of q-boson and 
q-fermion creation and annihilation operators. For a fixed ng+ np = 2". (where rill and nF 
are q-boson and q-fermion occupation numbers), the irreducible representations of the 
q-superalgebra generated by the q-oscillator are (2" + I)-dimensional. Particular cases 
when q is a root of +1 are discussed. A realization ofthe quantum group SU.,(Z) is obtained 
using a pair of I-fermion creation and annihilation operators. 

Quantum deformations of Lie algebras and Lie groups [ I ]  have been dsveloped in the 
theory of integrable systems where the Yang-Baxter equation plays a crucial role [2]. 
Quantum groups have found applications in lattice statistical models at the critical 
temperature [3] and in 2~ conformal field theories [4]. 

One of the simplest examples of a quantum group is SU,(2), the q-deformation 
of SU(2). A realization of SU,(2), using a q-analogue ofthe hosonic harmonic oscillator 
and the Jordan-Schwinger mapping has been achieved by Macfarlane [SI and 
Biedenharn [ 6 ] .  Using the same realization a theory of tensor operators for SU,(2) is 
constructed in [7]. 

In this paper we consider a q-analogue of the supersymmetric oscillator. Naturally, 
in addition to q-boson creation and annihilation operators, we introduce q-fermion 
equivalents, whose anticommutation relation involves q-extension. In the ordinary 
supersymmetric theory the superalgebra [SI is generated by H, Q+ and Q - ,  where H 
(Hamiltonian) is the even generator and Q* are the odd generators of the superalgebra. 
These satisfy the commutation relations, 

The q-deformation of this algebra turns out to be quite interesting as we shall show 
below. For arbitrary values of q, any number of q-fermions can occupy the same state. 
We are thus able to construct a q-realization of SU,(2) using a pair of q-fermion 
creation and annihilation operators. We hope that this construction will provide us 
with a method to construct a q-deformation of other superalgehras. 

The 9-creation and annihilation operators of the bosonic oscillator are postulated 
to satisfy the commutation relations 
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010S-4470/9l/030613+05$03.50 0 1991 IOP Publishing Ltd 613 





A 9-analogue of the supersymmewic oscillator 615 

For 9 =  1, it is seen from (12) and (13)  that only IO) andf'l0) are non-vanishing while 
( f ' ) " l O )  ( n  > 1) vanish identically. We interpret this as ( f t ) 2  = O  (9  = 1). It is also 
interesting to note from (14) that when 9 = exp(*2ni/n) for n even, [n]:=O. Similarly 
when q=exp(*i.rr/n) ( n  odd) [n]:=O. For these 9 values, the 9-fermion states are 
truncated at the nth level. For example, when 9 = no more than two 9-fermions 
can occupy a given state. Relations analogous to (8) can be obtained for the 9-fermion 
number operator NFhy simplyreplacing [n]: by [n]:. Note that, once again, NF+f:f,. 

H !  = f f i w ( f : f  -ff:, (15) 

!f !he %mi!!onian of the q-krmlon osci!!ator is taken IS 

then 

HEln): = f f iw  [[ n]: - [ n  + 11 :]I ng. (16) 

As in the q-hoson oscillator case,  !he levels are not equally spaced. 

ized basis states 
Consider now the q-generalized supersymmetric oscillator. Construct the normal- 

(17) F F -1'2 InRI nF)= ([nR1:![n IQ!) (a l )"B( f4 t )"W.  

Q+=a ,J ,  v- = a , i q .  

We introduce the odd generators Q* by 

( i s )  "+ - t r  

We assume that a,, and& commute with each other. From (17) we have 

Q+lnB, n ~ ) = ( [ n ~ l : [ n ~ + l l ~ ) 1 ' 2 1 n ~ -  1 ,  n,+l) 
(19) 

Q-lnB, n d =  ([no+ll~[n,l:)l''/n,+ 1, n F - U  

Q+ and Q- COnVefi a q.bosoii into a q-fei.imiori v tce  versa, 
We introduce the even generators N and S by 

N = f ( ~ ~ +  N ~ )  S=f(N,-  Nk3). 

The following relations provide a realization of a 9-superalgehra. 

[ N Q * l l n , ,  nJ=O 

[ S ,  Q+llnR, nF)=*Q+ln., n ~ )  

IQ+,  Q-)Inu, n d  
=HI%, nF) 

(21) 
= ( q - " ~ ' 2 [ n F ] : + q - n ~ ' 2 [ n e ] : ) j n H ,  nF) 

[ N ,  Slln,, nd=O. 

These relations illustrate the general structure of a superalgebra, [ E ,  E] - E, [ E ,  01 - 
anticommutation relations of the 9-deformed superalgebra can be read off from (21). 
It is seen that this algebra is generated by the set {N, S, Q+, Q-). N and S generate 
two commuting U(1) groups, while the odd generators contain both N and S i n  their 
anticommutator. The U( 1) group generated by S decouples from the superalgebra and 

0, io, 0;- E for iiie 06: 0 aiid eveii E geiieiaiois. The &siract i~iiiiiiiiiaiioii and 
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the Hamiltonian coincides with the number operator for the case 9 = 1. Since Q. 
commute with only N,  we may take the 'Hamiltonian' of the q-super oscillator to be 
the total number operator N, so that one has q-supersymmetry for the system. If the 
Hamiltonian H is defined as { Q + ,  0-1 in analogy with the 9 = 1 case, then H is given 
in ( 2 1 )  by Hlnb ,nF)=(q  - - N g / 2 [ n  F Y  1 F+ 9-Np/Z [nBl:)lnB, nF).  This is an interesting gen- 
eralization of the 9 = 1 case where H = N u +  NF. However H does not commute with 
Qi and thus is not invariant under the q-superalgebra. One finds a similar property for 
the two-dimensional a-harmonic oscillator studied in [ 5 ]  and [6]. The S11,(2) generators 
do not commute with the Hamiltonian of the oscillator. Nevertheless, since the deforma- 
tion of SU(2) has the property that it preserves the dimensions of highest weight 
representations, the 2~ harmonic oscillator energy eigenstates can be classified by 
SU,(2) highest weight representations. The associativity of the q-superalgebra in (21) 
is easily verified by checking the generalized Jacobi identities. 

It is useful to rewrite the basis states as follows. Let n and s denote the eigenvalues 
of N and S respectively. Then we can write In., nF)=In, s), where n B =  n - s ,  and 
n F = n + s .  Then 

R Parthasarathy and K S Viswanathan 

Q+ln, s) = J[ n -SI,"[ n + s+ 11: In, s+ 1)  

Q-In, s) = J [  n - s + 1 1 3  n + SI: In, s - 1). (27.) 

Q* change the s value of the state In, s) by one. For a given n, it is clear from the 
definition of the operators N and S that - n  G s G n. When s = -n, the state In, -n) 
(the highest weight state) is completely bosonic, while fors  = n, the state In, n) is totally 
fermionic. Thus Q+ are nilpotent: 

(Q*)*"+' = 0. ( 2 3 )  
Thus for a give n, the irreducible representations of the q-superalgebra are ( 2 n + l )  
dimensionai. Ti is  is of course true when 9 i i or one of ihe roots of (ii) as  indicated 
earlier. I f  9 = 1, Q: = 0, and all representations are two dimensional. When 9 =e*'"/" 
( m  odd), the irreducible representations are ( 2 m  + 1) dimensional of m < n and are 
(2n + 1) dimensional of m L n. The same is true when 9 = 

Finally, we construct a realization of SU,(2) using a pair of q-fermion creation 
and annihilation operators. This is analogous to the construction in [5] using bosonic 
ugciaruis. LCL I J , ~ J ~ , , ,  J ~ ~ J ~ ~ ,  UT LIIL. armrrilrairurl aiiu L-reauun operators i u r a  pdlI  01 

mutually anticommuting q-fermions. Form the quantities 

( m  even). 

-----.--- , ̂ . , r  c r?  rt , A .  .L. . _ _ : L : I . . : . _  ._1 ._..I :._ ....-. P.~. . - P  

K+=exp[- i r (N,  + N 2 -  1)/4]/:(cr+)~h 

K-=exp[-ir(  N ,  + N ~ -  1)/4]/:(u-)~A i, j = 1 , 2  (24) 

K ,  = f (  NI - NJ 
where o . + = ( ~  0 1  o) and u - = ( ~  0 0  o) 

Let us take the basis states as 

lk, .)I= Ik+ n, k -  n):= ( [ k +  n ] : ! [ k -  n]:!)-"*(/~,)"'"(/:,)'-"lO)~ ( 2 5 )  
which have the property that K,lk, n):= nlk, n ) :  and K,lk, n): - lk ,  n* I:. It can be 
verified that 
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As in the case of SU,(2) generators constructed in [XI out of q-boson creation- 
annihilation operators, these commutation relations are verified only on kets that 
terminate with the q-vacuum state. For q = 1, it is readily seen that (26) verifies the 
fundamental ( n  = if) representation of SU(2). (This is the only representation of 
SU(2) that can be constructed out off,  andf,.) For q #  1, (26) can be brought to the 
standard form 

[K,,K+I=*K* 

by replacing q by e'"(q')". 

(27) 
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Nore added in proof In general, equation (12) must read I n ) ~ = ( l [ n ~ ] ! I ) - " 2 (  f,;j"lO), so as to be applicable 
"'Ly "rc"mc "rgauus "I c""1p's.. I", 

certain values of n. This prescription for defining the norm amounts to defining the dual vector to (f')"lO) 
to be e'*'"'(olf" where e(") is the argument of [n:]!. 

For Bii VBiUeS q, This is ior q ouisidr iangr [ n : ]  L ~ . ~ ~ ~ .  ~ ..... :... .. --...,... CA_ 
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